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ABSTRACT

@E%a E@ﬂ@ NG,

This paper is concerned with the diffusion of & strong, time-
varying magnetic field of the form H = Hoe—at sin wt into an aluminum -
condﬁc‘cing region of finite extent. The rise in temperature imparted '

to the metal by the diffusion process is assum'ec_l small enough 06 that

- its conductivity can be considered constant, The solution of the diffusion

equation with such an inhomogeneous, time-varying boundary condition

- is effected by Laplace transform methods. The resultant diffusion field

'is expressed in terms of complimentary error functions of complex

argument, The m.agnitude'of the diffusion field is, of course, a function

of both time and penetration distance; it is also dependent on two

additional parameters: the damping rate and the angular freque.n.cy of

the surface field. The complete behavior of the diffusion field is

ascertained by both evaluating and plotting the time-variation of the

magnetic field diffusion as a function of each of the othér three parameters;

“all other quantities in each case being held constant. It is found that the

diffusion field, like the surface field, is also a damped oscillatory
function in time. The frequency of oscillation of the diffusion field
decreases with increasing penetration distance and, for a given depth

of penetration, exhibits a strange dependence on the damping rate

N associated with the surface field, As is expected, the peak value of the
“diffusion field decreases with increasing penetratlon distance. The

fraction of the surface field that diffuses to a given depth of penetration

ina glven time depends markedly on the ratio -C—g . Fora glven frequency,

the greater the damping rate, the greater the percentage of diffusion,

iif .
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| SECTION I
' @ﬁ@ﬁgg‘g& = e INTRODUCTION

Magnetic:preSSures associated with the damped sine-wave

. magnetlc fields produced by discharging a capacitor bank and estab-
- lishing a rmgmg LRC circuit, are often used to impulsively load
thl_n-walled metallic structures. This same method is also employed-'
‘in the magnetic forming of metal. “When the appropriate metal wéll
thlcknesses are comparable to the gkin depths of the applied fields,
one can no longer neglect the diffusion of magnetic flux lmes through
‘the metal. This paper makes usé of error functions of complex
argument, recently shown to be of great importance in problems of
heat condﬁction, to solve the diffusion equation with inhomogeneous
‘boundary conditions and determine the diffusion of such time—varying

magnetic fields,



SECTION II

@% B2 e | | STATEMENT OF THE PROBLEM

Consider a strong, t_ime-v-é.rying magnetic field that is sudderily
applied to the surface of an aluminum conducting medium, If the

~magnetic field inténsity is not sufficient to produce an appreciable

- fractional change in the terhperature of the aluminum, - it is not

“unreasonable to regard the conductivity of the metal as a constant, The

one-dimensional diffusion of the magnetic field into the conductor is -

adequately described by the two Maxwell equations of electrodynamics:

3~ i SR ¢ 1§
and '
9B . 8H
_ a_X = juf 7 ot . _ (2)
- together with the constitutive relation
i = ©oE o ' (3)
where _
x _denotes the distance inward from the surface of
the conductor,
H is the magnetic field intensity,
E  is the electric field intensity,
j  is the electric current density, and

¢ is the magnetic permeability of the metal;

all quantities are in rationalized MKS units.

For the case of constant conductivity, these three equations can

.- be combined to obtain the following single, linear, partial differential

- equation:
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a%m 8H - N

'a“X—z— = MO, (4)

‘which is easﬂy recogmzed as the diffusion equatlon generally assoc1ated

- with problems concerning heat flow

’I‘he boundary and initial conditions must still be ‘specified,

Smce the magnetlc f1e1d is applied suddenly at some given time, the

1n1t1a1 ‘condition is '
H(x,0) = o0 , (5).
As mentioned earher ‘the problem is that of a time- -varying

fleld applied to the surface of the metal. Choosing the speolflc case

of a damped sinusoid, the appropriate boundary condition is
o L .
H(0,t) = Ho(w, a) e  sin wt )

where e is the damping rate and the angular frequency; both
quantltles are in units of reciprocal seconds, The constant, H , is
independent of x and t, but can be a function of either the frequency
and/or the dampmg rate. For a conducting: region of f1n1te extent the
'fleld at the outer boundary must be finite and, furthermore the maxnnum

value of the dlffusmn field at the outer boundary must be less than the '

- _'-correspondmg value’ at the inner boundary, {x = O) Thus, if the outer

boundary is located at x = d,
max(d’ H o< -Hma:x(O‘ 4

The diffusion equation can be easily solved by using integral

transform methods when the boundary condition is homogeneous; i, e.,

4




@ﬁg@ﬁ Eﬁ@ =3

H= Ho : ! If the electrical conductivily is temperature dependent, the

-electrodynamical equations listed above are then coupled to the equations

of heat flow, and the resulting differential equations dre non-linear. In

- Reference 2 a solution of the non-linear diffusion problem with homo-
' ~geneous boundary conditions was accomplished. The system of rion-
| '7111‘188.1" partlal differential equations was reduced to a system of non -linear

_ ordinary dlfi"erentlal equations in a smgle varlable by means of the

transformatlon

In the present case, the 1nhomogeneous boundary condition precludes

the use of this technlque - -

Since the surface field exists only for some t > 0, this suggests
the use of the Liaplace Integral Transform with respect to the time
variable; i, e, '

o0 -st .
F(x,s) = [ e "Hxt)at . (7)
. 0 :
The Laplace transform of the diffusion equatlon Equatlon (4) then

becomes

22 = LosF : ~(8)

Slnce H(x,0) = 0,

One must also transform the boundary condltlon

FO,s) = H f e 2 sin wt _eﬂ,sjc dt =
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The transforﬁled differential equation is easily solved to yield,
~as the ohly admissible solution, ' '
CF(x,s) = Als) exp-(-if,ucr-s x)- . - (10) -
One can show that the p051t1ve exponentlal solution leads to values of
the d].ffusmn fleld which violate the boundary condltlon at x = d,
7 " The value of A(s) is easﬂy obtained from Equation (9), - and the
complete solution in transform (frequency) space is
S | How - e |
CPF(x,8) = ———— exp (-,, puos x) . (11)
' (s+2) %+ w? A '
" The solution in real (x,t) space is then obtained by inverting the
. : _ '
R transform given by Equation (11), Thus,
C+ico
o 1 IfIc'r eXp (-\} uos x) st
H(X, t)_ = EmT ST ds : e
21 27 | s+a-iw _
o C-iwo _ ' '
: g C+io ' '
- -, exp (-\) pos xy st] _
- 1 ds ~ e . (12)
_ s +a+iw -1
© C-ieww : : :
- Consider ' o )
' - CHe
_ 1 ' ds exp (-\/ pos x) st
I = ranry - r e .
i 271 8 +a-iw
C-iw™ - : (13}
C(aiedt
Multlplymg both 51des of this equatlon by e and then differentiating
| (’) - . -under the integral sign, one obtains = -~ : o -y
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o0 - (a~lw}t (a-iw)t 1 :
B 11 e e | o3 ds’ exp( 4" Hos x) e® ds
R - C-iw? | (14)
- However, thls integral is a well- known inverse transform and
~one finds that3 ¢ '
9 (a-iw)t _ (a-iwit x uo X Qo iy,
st © © 2y 3 P it - U9

E

. _ t (a 1u)t' ( -Xzycr)
-I - -(a 1w)t X P\ I dit
1 3/2 T

- Solving this differential equation for I

(16)
) . o 1
‘Making the substitution t' = 5
' y
o )'t o %
I = a-1w / exp ” y + — dy
1 2
-1
t 2 _ (17)
where b2’=- a~iw is a complex number,
The solutions to this form of integral are error functions of
complex argument, One finds thats” o .
o _ 9 - 9 \
/ exp (-az_y2+l?-§ )dy = g exp(::—-'+ bzt) w ( £+ i_'—E_)
J1 DI e o \t
t 2 | S '_
+w(—b\[t_+i-——) (18)
- ' _ t
O
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where w(x +1iy) - is the complemenfary error function of complex

.argument and is define_d as
- W(Z) -2 e ( 1+ f I e . (19)

- This function, which has recently been shown to be of prime -

imporfance in problems involving heat conductiori,' was first tabulated

-with some degree of accuracy by Faddeeva and Terentev in 1954, 4 "This

functlon is dlscussed in some detall in Reference 5.

Maklng use of Equatlon (18), the expressmn for I is rewrltten as

o ()] - [w"ﬂ( o]

4 w[A\It_H(-E 2.8 t)} (20

Lo’
]

where A and B are the real and imaginary parts of b = 4/ a-iw,

respectively, and are as follows:

._._2+ 2+ | ;[2 _
-i_a. W T a R (21)

A

B (22)

In an analogous manner the second 1ntegra1 in Equatlon (1 2)

' - ; C+ioo
i = 1 / 'ds exp(\/uosx)

s+ta+iw - — . o
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-15 exp(fxzfc‘g) W A t+1( W+ B\[’) w -A\[—-}- ( \\Fg o )

_ @%E@ﬂ@lmc _

(23)

Comblnlng the results of Equatlons (20) and {23) Wlth Equatlon

(1 2) one obtains

B S B |
Bext) =7 e [wlag v igam] Wl EHE-m)
Cewleri@em] wl-gri- ] (2
‘where _ - ' : ' : . R
£= Ayt
- n = Byt and

LoxgEo |
' 5 I . : : (25)

By making-use of the several symmetry relations involving the

~ error function of complex argumen’t the above solution is greatly

31mp11f1ed and it will be concluswely demonstrated that this result is

' 1ndeed real r-ather than complex One can show from Equatlon (19)

“and from the 1ntegral representation,

. t2
. i Coe  dt o
= = (26
- w(z) = / —: . (26)
----- o0 ‘
" that the following symmetry relations are true:
wi-x+iy) = Wk S Coen
wix-iy) = 2e Y= (cos zxy +1i'sin 2xy) - w(x +iy) (28)
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| | 2 2 | |
w(-x-iy) = 2¢¥ "* (cos 2xy - i sin 2xy)_ - wix + iy) . (_29)
- Making use of these relationships, the dlffusmn fleld solutlon
~canbe dlsplayed by either of the followmg forms
“For L=7, B
. - H 2 - g )
Hix,t) = e {Im wl £+ i(C~m] - Im w &+ i(C+n)}_] .. (30)
“For¢ <,
. H 2 2 2 o : .
- = 08 [2exp - [£7-(n-0)7] sin 2&(n-0+ Im w[ £+i(n-0)]
H(X, t) - -"é'— [S] _ _ s
- Imw[ & +i(n + ﬁ)]] S N (31)
From this last result, one can readily see that the solution
satisfies both the initial condition and the boundary condltlon at x = 0,
When t = 0, { becomes infinite, e—C approaches zero, and H(x, 0) =
When x = 0, £ = 0; and from Equation (31) one obtains the following:
.2 2 '
HO, ) = H_ o &) ginggy (32)
- -Howéver,_.- from _the._defin_itions of £, n, A and B
_ §2—'772 - (Az-__ 'B2)t = gt
: ,-'gn = ABt = EJ—t
2
-and hence _ :
HO,t = H_ e " sin wt o (33)
‘which satisfies the boun_dary_c.ondition. | - o ' ‘. o

‘10



SECTION IIX

@%,E @3'“& . . .DISCUSSION OF THE RESULTS

' The dlffusa.on field H{x t) is a functlon of four variables: time,
penetratlon distance, dampmg rate, and angular frequency Some
1n_81ght is gained into the nature of the diffusion field by evaluating
 H(x, t) as a function of time for different constant values of x, the other
.two v'ariables_,- a and w, being maini:éine_d fixed thlroughout. Values of
H/Ho.afe listed in Table 1 for constant values of a = 5.4 x 10% sec” _
andw = 3,05 x 105 secul, and these values are plotted in Figure 1.
The values of x were chosen as the most interesting'cases because
they are comparable to the skin depth in aluminum at the aforementioned
| ffequency. As can be seen from the plots in Figute 1, the field, at any
~given depth in the metal, varies as a damped oscillatory function of
time. The period of oscillation increases with increasing penetration
depth, The surface field, H{x = 0) = Hs , rises to its peak value after
. 4. 4 microseconds, while the rise time to peak is accordingly 7.0
microseconds at x = 3,048 x 10-4 meter, 7.7 microseconds at
x = 4, 064 X 10'-4 meter, and 8, 5 microseconds at x = 5, 080 meter,
S;rmlarly, the peak value of the diffusion field decreases with increasing

penetration depth, as is expected.

_ . The variation of half-period of oscillation of the diffusion field
is depicted as a function of penetration depth in -Figure 2. For given:
| ~values of a = 5 x _10'4.'_se'c-1 and w = 3. 5 X 105. sec'l, the half-period
“-at a depth of 3,048 X 10-4 meter is observed to be 11. 9 microseconds,
compared to a half-period of 13,0 microseconds at a depth of

4.064 x 10“4 meter,

These times are considerably greater than the 9-microsecond

half-cycle of the field at the surface,

For the case of a constant magnetic fleld applied to the surface

of a conductor the fields that diffuse into the metal never reach magmtudes )

11
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0.6
x =3.048 x107%
o . . : .
T o4 >_\
. _a
x=4.064 X 10 " - '
x=5.080%10"%
.4 6 B 10
. Time, Microseconds
. '-Fig'ur'e 1. . Tim.e_'véri'ation ‘of diffusion _field as a function of pe'netrati'on
: . . ' ' L4 -1 : o
‘f:). S : distance for constant a2 = 5.4 x 10 sec ! and for constan’f _

LW =-'._3-. O-S‘X 105' secwl.
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0.4

[ '

_X=3.048X107%

x=4.064%10™%

C H/H,

a 6 B 10 2 4
' Time, Microseconds

Figure 2, ’Half—period of o.s'cillation of.diffusion field as a function of

penetration depth for constanta = 5 x '104 sec:__1 and for
.¢Qnstant_ @ = 3.5%x10° sécnl. | '

14



i ;

' @E@Q}E S&@ INES,

- greater than those of the surface field. - However, it is evident from

Figure 1 that this is not true in the present instance, For any given

| 'penet'r-ation depth %, there exists during each half-cycle a well-defined

time-interval over which the diffusion field is greater than the corres-

- ponding field at the surface, This is a direct consequence of the
--broadenmg of the half-period with increasing penetration dlstance The '

- spatial profile of the diffusion fleld at glven instants of time is shown

in Figure 3. At early times, the field falls off sharply W_1th penetration
distance, whereas at six microseconds, the variation with distance is

'n'early linear, After ten microseconds, the surfate field is nearly zero,

‘and the field 1ns1de the conductor is greater than the fleld at the surface

‘The complete behavior of the diffusion field cannot be ascertained

‘until the time variation of the field with respect to both the damping rate,

a, and the angular frequency, w, respectively, is determined.

_ ” Values of the Idamping rate and the angular freqoency have been
chosen to correspond to physically real situations. Values of w were

selected in the range 3 to'4 x 105 sec-l, which corresponds to periods
of approximately 15 to 20 microseconds, The ratio w/a usually varies

from a low of 3 to a high of 15 for most capacitor banks thus dictating

- choices for the damping rate in the range 3to 10 x 104 sec 1.

The time variation of the diffusion field w1th damplng rate is

shown in Flgures 4, 5, and 6 and 1n Tables 2, 3, and 4 for constant

x= 3,048 x 10-4 eter and constant @ = 4 0x 105 gee _1, 3.5.x 105'sec-

and 3.0 x 105 sec 1, respectively, . Note that in each instance the field

generally decreases with increased dam’ping, as expected, since the

‘surface field, Ho = H_ e_at.sin‘wt also exhibits such behavior. The

rise time to peak also decreases with 1ncreasmg a, Wthh again

corresponds to the behav1or of the surface field whose time to peak is

15
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‘Spatial variation of diffusion field as a function of tlme

for constant a<s 5, 4x 104 sec -1

w = 3.05x 10 sec'l.
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. TABLE 2.  TIME VARIATION OF H/H_ AS.A FUNCTION OF THE

o 5 —
'DAMPING RATE FOR CONSTANT @ = 4.0 x 10° sec
AND FOR CONSTANT x = 3.048x 10 * m i

-

Time, Microseconds

sx10* | 0.108 | 0. 218 0.319 | 0,382}0.396|0,363|0,287 | 0,182
5x_1o4" 0.107 | 0,214 | 0,310 | 0.370 |0.381|0.347 {0,274 | 0.174

6x10* | 0. 106 0.210. | 0,301 | 0.357 |0.366]0.332 0. 262 0.166

7x10% | 0.105 | 0. 207 10.294 | 0,345 |0.352|0.317|0.250 | 0,158

8x10 | 0.104 | 0,202 | 0.287 | 0.334 [0.339 | 0.303|0.238 | o. 153

9X104 0.103 | 0,198 | 0.2%0 0.323]0.326]0,291]0, 227 0. 147

4

| 10x10% | 0.102 | 0.194 | 0.273 | 0.313|0.314 0. 280 | 0. 216 | 0. 141

a 2 1 3 4 5 6 7 8 9

3x10" | 0,109 | 0.223 | 0.328 | o0, 395 0.413|0.380(0.302 | 0,191

20
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'TABLE 3. TIME VARIATION OF H/H_ AS A FUNCTION OF THE

= 3,5 xlO5 sec

DAMPING RATE FOR CONSTANT w
AND FOR CONSTANT x = 3,048 x 1074 m

Tifne, Microseconds

a 3 4 5 6 7 8 9

3x10% {0,199 | 0.303 | 0.380 | 0.422 0.422 | 0,382 |0.307 |-0,206
“4x10” {0,195 | 0.284 | 0,367 | 0.404 0,403 |0. 362 0.289 | 0.196
5x10% | 0.192 | 0.286 | 0.355 0.388 | 0. 385 0.344 10.274 | 0,187
6x10% {0.188 | 0.278 | 0.343 0.373 |0.367(0.327|0.260 | 0,177
7x10% | 0.185 | 0.271 | 0.331 | 0.358 0,349 [ 0. 311 |0. 246 | 0. 168
8x10* 0.182 | 0.264 | 0.320 | 0.343[0,333/0,295]0,233 | 0,160
_9}:104 0.179 | 0,257 | 0,309 | 0.329|0,319{0.2790.221 | 0,152
10x10% [ 0.176 | 0,251 | 0.298 | 0.815|0.305 | 0,264 | 0,208 | 0. 145

TABLE4, TIME VARIATION OF H/H_ AS A FUNCTION OF THE.
' DAMPING RATE FOR CONSTANT w = 3.0 x 10° sec

10x10

. 154 |

0. 305

0,310

'AND FOR CONSTANT x = 3,048 x 10"~ m
Time, Microseconds
a 3 4 5 6 7 8 9 10

~3x10* 0.178 | 0,272 | 0.352 | 0.408 .0;435 0.434 0._398 0..336
ax10? 0.172 | 0.264 | 0,339 | 0.392|0.415|0.409 |0.374 | 0,313
5x1o_4 0.168 [ 0.257 | 0.328 | 0.3750.395|0,3860,352 | 0,294
6x10* 0. 165 -' 0.251 | 0.317 | 0.360|0.376/0.366/0.331 | 0.276
7x10% | 0.162 | 0.245 | 0.307 | 0.345 |0, 358 0. 347 0.311 | 0,259 |
_8:_(_104._0_159_ 0.238 | 0.296 | 0.331]0.340 '0.3280.204 | 0,243 |
‘ox10® [0.156 | 0.232 | 0.287 | 0.318]0.325 | 0.311 | 0. 277 0,229 |

1o 0.225 | 0.277 0.295|0.262 | 0.213
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t = Lol @ (34)
max W a o R
Although the perlod of the surface field is not dependent onthe - -
o damplng rate, Figure 7 clearly shows that the half- perlod of the
diffusion field 1ncreases w1th 1ncreas1ng a. This variation is unusual _

- because the rise time to peak decreases with increasing a.

It is also of 1nterest to determme the fractlon of the surface '_

' f1eld that dlffuses to a given penetratlon depth durmg the first quarter-
cycle, The plots in Flgures 4, 5, and 6 do not reveal the answer to

| thls query because the surface field also varies as a function of the

7 dampmg rate. Accordingly, the difference AH = H H(x, t) has been

_plotted 1n Figure 8 for constant values of w and x, and the ratio

“h = H{x, t)/H has been plotted in Figure 9. One can readily observe
from these -two plots that the percentage dlffusion increases with the
damping rate. Values of AH and h are llsted as functions of a and t

" in Tables 5 and 6, respectlvely

_ One must still investigate the dependence of H(x, t) on the. -angular
frequency, w, One expects, as shown in Figure 10, that both the

rise time to peak and the ha.lf-perlod will decrease w1th 1ncreasmg '

- frequency, since the surface fleld eXhlbltS such properties, However,

" for the surface field, the peak value of the fleld mcreases with mcreasmg
frequency as shown in Figure 11, The converse is true regarding the-
diffusion field as revealed in Figure 10, This 1rnp11es that the percentage.

VIdlfILISIOn 1ncreases markedly as the rmgmg frequency, w, is lowered

The sahent features of the above analysm are summarlzed below,

A, Al other parameters bemg held constant, ‘the rise time .
 to peak of the dlffusmn fleld

1, increases. w1th increasing penetratlon depth
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DAMPING RATE FOR CONSTANT w

: H -H '
TABLE 5. TIME VARIATION OF AH = —-f’ﬁm AS A FUNCTION OF
_ . | - |
THE DAMPING RATE FOR CONSTANT w = 4.0 x 10°
sec”! AND FOR CONSTANT x= 3,048x10 " m
: Time, Microseconds
a 2 3 4 5 6 7 8 9
' 3x10™ | 0. 567 - 0.629 | 0.559 | 0.388]0,150 (-0,110{ -0, 348 | -0, 528
ax10% | 0. 554 .0.608. | 0.532°| 0.361|0,134 [-0,111] -0.329 | -0.488
 5;¢104 0.542 | 0.588 | 0,508 | 0.338}0,119 [-0,112| ~0, 313 | -0, 455
6x10°| 0,530 | 0.568 | 0.495 | 0.317]0.105 |-0.112| -0, 288 | -0, 424
7x10% | 0,519 | 0. 548 | 0.462 | 0,2960.091 |-0,113] -0, 283 | -0, 394
8x10" { 0.507 | 0.529 | 0.439 | 0.274|0.078 |-0.113| -0. 269 | -0. 367
ox10% [ 0.496 | 0.513 | 0.417 | 0.253) 0,007 |-0.113] -0. 255 | 0. 343
10x10% | 0.485 | 0.498 | 0.396 | 0.232|0.056 |-0.113| -0, 242 | -0. 320

"TABLE 6, TIME VARIATION OF h = H/Hé AS A FUNCTION OF THE

= 4,0 x 10° sec”?
AND FOR CONSTANT x = 3,048 x 10 * m

Time, Microseconds

0,174

a 2 3 4 5 6 7 9
- 3x10° 0.161 | 0,262 | 0.370 | 0.504[0.734 | 1,407 | -6.571 | -0. 567
ax10® [ 0,163 | 0.264 | 0. 374 0.513|0.747 | 1.441 | -6.792 | -0. 502
5x10% | 0. 165 | 0. 267 .0.379 0.523|0.762 | 1,477 -7.030 | -0, 619
- 6x104 0.167 | 0.270 | 0,384 | 0.531[0.778 | 1,514 | -7. 306 | -0. 647
'?_ 7x10% | 0.168 | 0.273 | 0.3809 1 0.540 [ 0.795 | 1.554 | ~7,582 | -0. 677
| 8x10® {0,170 | 0.275 | 0.395 | 0.550|0.812 | 1.594 | -7.860 | -0, 711
; ox10% | 0.172 | 0. 278 | 0.402 | 0.561 | 0.830 1.635] -8.154 | -0, 750
| 10x10° 0.280 | 0.409 | 0.571 1,677 | -8.452 | -0.790

0. 848

.y



.01'5

W= 3.5%105

0.4+

| w=aoxi03 |,

| O

b

.

4 ' 6 8
Time,'--'Microse-conds
Figure 10, Time variation of diffusion field as a function of frequency.
&"\ e " for constant a = 4 x 10* sec”? and for constant x =
B 3.048x 107 .

27



@% = ﬁ}g@ [

g

H
L

Juan—

0.75-1—~

0.50

. -0.25 - _ \
o 2 4 .6 .8 10
' : Time, Microseconds '

SRR . — . -at . ' .
Figure 11, Time variation of surface field e " sin wt as a function of

: . 4 -1
.. frequency for constant a = 4 x 10" sec .

28



-
N .

@% E@&ﬁ ING.

2. increases with decreasing damping rate, and

" - ' S ~ 3. increases with decreas_ing freq—uency.

B. All other parameters bemg held constant, the 1ength of
| the half-perlod of osc111at10n .

1. increases with increasing penetration depth,
2. | increases with increasing damplng rate and

3. increases Wlth decreasmg frequency.

C CAI other parameters being held constant the percentage
dlffuswn ) 7 .
1. 1ncreases with decreasing penetration depth,
_ : 2. increases with increasi.ng damping rate, and

3. decreases with increasing frequency,

/’* :
N
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